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S U M M A R Y  
A queueing system has restricted accessibility if not every customer is admitted to the system. For such a system 
the admittance of a dustomer will in general depend on the state of the queueing system at the moment of his arrival. 
In this paper queueing models will be studied for which the accessibility depends on the actual waiting time of the arriv- 
ing customer. Various queueing situations encountered in the allocation of memory equipment for information pro- 
cessing systems may be described as a single server queueing system with restricted accessibility; the mathematical 
models for the involved storage problems belong to queueing theory and are discussed in the present paper. 

1. Introduction 

A queueing system has restricted accessibility if not every customer is admitted to the system. 
For such a system the admittance of a customer will in general depend on the state of the queue- 
ing system at the moment of his arrival. A system with a limited number of waiting places is a 
typical example of restricted accessibility. An arriving customer who finds all waiting places 
occupied is not admitted (cf. Cohen [1]). 

In this paper we shall consider several single server queueing models with accessibility 
depending on the actual waiting time of the arriving customer. 

Let a,, n = 1, 2, ..., denote a sequence of independeot, nonnegative and identically distributed 
variables with distribution function A('); v,, n = 1, 2 ..... is another sequence of independent, non- 
negative and identically distributed variables with distribution B(.). It will be assumed that 
the families {a,, n = 1, 2,...} and {%, n = 1, 2,...} are independent families of stochastic variables. 
a,+ 1 is the interarrival time between the n th and (n+ 1)th arriving customer, while % is the 
service time of the n th arriving customer. It is further assumed that 

A(O+)=O and B ( O + ) = O .  

The Laplace-Stieltjes transforms of A (t) and B(t) are defined by 

a(p) = e-P~dA(t),  fl(p) = e-PtdB(t) ,  Re p > 0.  
o o 

Denote by w, the total amount of work still to be handled by the server at the moment of arrival 
of the n th customer. Let K be a positive constant. 

In the first model to be studied (model I) the n th arriving customer is admitted to the system 
if and only if 

w, < K .  (1.1) 

If the customer is admitted he waits for service, and service is in order of arrival. If the customer 
is refused, however, it is assumed that he never returns. Assuming that wl =0, the model I is 
described by the set of recurrence relations: for n = 1, 2 . . . . .  

W,+ 1 = [Wn"k'Cn--6,+I] + if w , < K ,  

= [w,-a 'o+l]  + if w , > K ,  (1.2) 

W l = 0 .  

Journal of Engineering Math., Vol. 3 (1969) 265-284 



266 J. W. Cohen 

The second model to be studied (model II) differs from model I in so far that the condition 
(1.1) is replaced by 

w.+~.  < K .  (1.3) 

Again assuming that wl =0  this model is described by the relations : for n = 1, 2 . . . . .  

w . + i = [ w . + ~ . - ~ . + i ]  + if w . + % < K ,  
= [ w . - a . + l ]  + if w . + v . > K ,  (1.4) 

W l = 0 .  

Other models with restricted accessibility are obtained if the constant K is replaced by a sto- 
chastic variable. 

Let {u., n = 1, 2 . . . .  } denote a sequence of independent, nonnegative and identically distri- 
buted variables, and assume that this family of variables is independent of the families {~r., 
n = 1, 2 . . . .  } and {% = 1, 2 . . . .  } . 

Model III is obtained from model I by replacing condition (1.1) by 

w. < u . ,  (1.5) 

so that for this model: for n = 1, 2 . . . . .  

w.+ i =  [ w . + ~ . - ~ . + l ]  + if w . < u . ,  

= [ w . -  ~.+ 1] + if w. > u . ,  (1.6) 

W i = 0 .  

For model IV the condition (1.3) is replaced by 

w.+x .  < u . ,  (1.7) 

so that for this model: for n = 1, 2 . . . . .  

w . + l = [ w . + % - ~ . + l ]  + if w.+%<u. ,  

= [ w . - ~ . + l ]  + if w . + z . > u . ,  

W i = 0 .  

In section 2 we shall study model I for e (p) arid fl (p) both rational functions of p. The time de- 
pendent solution and stationary distribution are discussed. In section 3 we shall discuss model I 
for M/G/1 and particularize for M/M/1 and M/D/1. The case G/M/1 may be discussed along 
the same lines. Model II is first discussed for c~ (p) and fl (p) rational functions in section 4, 
particular results are given for M/M/l ,  while for M/D/1 such results are presented in section 5. 
Finally, model III is discussed in section 6, but only for M/M/1. Model IV is not discussed in 
this paper. 

2. M o d e l  I 

For model I we have for n -  1, 2 . . . . .  (cf. (1.2)), 

w . + l = [ w . + ~ . - ~ . + i ]  + if w . < K ,  

= [ w . - a . + l ]  + if w,>=K, (2.1) 

W i = 0 .  

Hence for Re p => 0, 

E{exp(-pw.+,)lwl = 0} = E{exp(-p[w.+x.-~.+t]+)(w.<K)lwa = 0} 

+E{exp(-p[w.-~.+l]+)(w.>- > - K)[wi = 0}, (2.2) 
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where for an event A we denote by (A) the indicator function of that event, so that 

( w . < K ) = l  if w,,<K, 
= 0  if w . > K .  

Since by definition: 

Ix] + = 0  if x < 0 ,  = x  if x > 0 ,  

we have 

= - -  + e-"Xdr/, Re p > Re 17 > 0,  (2.3) 
27zi ~ p - r /  

where we use the notation 

. . .  dr/ = lim~_~ J~-~ ... dr/ with e = Re r/. 

Assuming that  e (p) exists for Re p = 0 - ,  and noting that w,, T, and a,  + ~ are independent, it 
follows from (2.2) and (2.3) for Re p > Re ( = 0 + ,  

E{exp(-pw"+ l)lwl=O}= 2~i~ i ~_~ + 

E {exp ]--  ~ (w, + % -  a.+ 1)] (w, < K)lwl =0} d~ 

E {exp [ -  ~ (w, -  a,  + ~)] (w, > K)lwa = 0} d~ 

= 2ni + c~(- ~)fl(~) 

E {exp ( -  ~w,)(w, < K) lw~ = 0} d{ 

1 1t , 

E {exp ( -  r > K) lw 1 = 0} d~, 

the reversal of integration and expectation is easily justified. Define for Ir[ < 1, 

(2.4) 

q~l(r, p) = ~ r"E{exp(-pw,)(w,<K)[wl = 0 } ,  
n = l  

q)2(r, p) = ~ r"E{exp(-pw.)(w.>K)]wl =0} ,  Re p > 0 ,  
n = l  

r (r, p) = r  p)+r  p ) =  ~ r"E{exp(-pw,)[w, = 0 } ,  
n = l  

R e p > 0 .  (2.5) 

It follows from (2.4) for Irl < 1, Re p >Re  ~ = 0 + ,  

~'(r'P)+~bz(r'P) = 2hi + fl({)c~(-{)~bl(r'{)d{ 

+ ~ /  + ~(-~)r ~)d#+r. 

Since for [rl < 1, ~bl(r, p) is an entire function of p, q~2(r, p) is analytic for Re p > 0  and 

(2.6) 
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lira C t ( r , p ) =  ~ r"Pr{w,=O[wl=O}, - � 89189  
[p[--* oa n = l  

lira ~2(r, P) = 0 ,  -.�89 p<�89 (2.7) 

it follows that for It[ < 1, Re p > R e  ~ = 0 + ,  

r - 2~i + {1 - r~ ( -~ ) f l (~ )}  4),(r, ~)d~ 

+ ~ ~ _ ~  + { 1 - r a ( - r  ~2(r, r162 (2.8) 

To obtain the solution of (2.8) it will be assumed for the present that ~ (~) and fi (~) are rational 
functions, i.e. 

a(p) - c~z(p), fi2(P)' (2.9) 

where cq (p), a2(p), fi~ (p) and fl2(P) are polynomials in p. Let m denote the degree of a2(P), and 
n the degree of fl~ (p), then e~(p) and fit (P) have a degree at most equal to m - 1  and to n - 1 ,  
respectively, since A (0 +)  = B (0 +)  = 0. 

From Rouchffs theorem applied to the function of p, 

1-re(-p)fl(p) with [ r l < l ,  (2.10) 

it follows easily that this function has exactly m+n zero's 6~(r), j =  1 . . . . .  m; e~(r), i=  1,. . . ,  n. 
These zero's are continuous functions of r for It[ < 1, and for It[ < 1, 

Re~,(r)<0, i=1 ..... n ;  R e ' A 0 > 0 ,  j = l  ..... m. (2.11) 

Define for Irl < 1, 

vl(r) = min Re 5j(r), v2(r) = max Re el(r). (2.12) 
l <=j<=m l <__i<=n 

Defining for Jr[ < 

H_ (r, p) = 

For [r[ < 1,f(r, p) and g(r, p) are two polynomials in p of degree m - 1  and n - 1 ,  respectively. 
These polynomials are uniquely determined by the condition that for Irl < 1, the m+n zero's 
of (2.10) are also zero's (and the only zero's) of 

pf(r, p) g(r, p) 
~2(-P---~ + {e2(-P)-rel(-P)} f l--~ e - P C + r '  Ir[ < I .  (2.13) 

1, 

1 - r ~ ( - p ) f l ( p )  &(p) ,  

(1 (p-~,(r)) 
i = 1  

H+ (r, p) = 1-r~(-p)fl(p) c~2(_p), 

I~I (p-~j(r)) 
j = l  

we shall show that the polynomials f(r, p) and g(r, p) are also determined by the following 
integral relations. For vl(r) > R e  r >0, Re ~ > R e  p, [rl < 1, 

f(r,p)= - e2(-p)H-(r'P)2~i j~ { (ez(-r g(r'fl2(~) ~) e-r 

and for v2(r)<Re r/<0, Re t /<Re  p, Ir[ < 1 ,  

r) 1 ar 
+ ~J re(r ,  r r  

(2.14) 
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g(r, p) fl2(p)H+(r' P) jc ~ r/f (r, r/) } 1 dr/ 1 . (2.15) 
- 2~i , ( a ~ - ~  + r OrH+(r ' r/) r/--P ~2(_ r / )_ r~ l (_ r / )  

For 9 (r, p) a polynomial in p it is easily seen from (2.14) thatf(r ,  p) is a polynomial in p of degree 
m - 1 ,  and similarly from (2.15) it follows that g(r, p) is a polynomial of degree n -  1 if f (r, p) 
is a polynomial. The integral in (2.14) is equal to the sum of its residues at its poles ~=6j(r), 
j =  1 . . . . .  apart from a factor - 1 .  Evaluation of this integral in (2.14) and taking p = 6 j ( r ) ,  
j =  1 . . . . .  m leads to the condition (2.13) for p = 3j(r),j = 1 . . . . .  m. In the same way (2.15) leads to 
the condition (2.13) for p=e~(r), i= 1,..., n. Note that ~2( -  r/) - r c q ( -  r/) has for Irl < 1 no zero's 
with Re I/< 0. 

Next we shall prove that for Irl < 1, 

1 ~pf(r, p) (_p)) g(r, p) e_PK+r } 
q~,(r, p) = 1 -r~( -p ) f l (p )  (a~--p)) + (~2(-P) "~-, fi2(P) ' 

g(r, p) 
r p) = - ~ 2 ( - p )  B ~  ~ e  -~ , Re p < 0 ,  (2.16) 

is a solution of (2.8). Substitution of (2.16) into (2.8)and noting that fl2(P)and ~2 ( - P ) h a v e  no 
zero's for Re p > 0 and Re p < 0, respectively, yields for [rl < l ,  Re p > ~ = 0 + ,  

2~i ~ { 1 - r e ( - ~ )  fl(~)} ~l(r' ~)d~ = ( c q ( - P ) - r  el (-P)) ~2wj e-PK + r' 

1 i t ( 1  , ,,g(r,p) 2hi r ~ - ~  + {1- r a ( - r  Q d r  - (c~2( -p) -ra ,~-p) )~z(p)  e-Pr. 

Hence the expressions (2.16) satisfy (2.8). 
It remains to prove that ~t(r,  p) and ~2(r, p) as given by (2.16) are indeed the generating 

functions defined by (2.5). 
F rom (2.5) it follows that for Irl < 1, q~z(r, p) should be analytic for Re p > 0, while ~ ( r ,  p) 

is an entire function of p of exponential type and order one. E{exp(-pw,)l  w,< K} is the 
Laplace-Stieltjes transform of a distribution of a variable which is bounded to the left by zero, 
and from the right by K, whereas E{exp ( -  pw,)l w, > K} is the transform of a distribution of a 
variable which is bounded to the left by K. lhese  latter properties lead via (2.5) to properties 
of ~ (r, p) and ~2 (r, p). It is readily verified that qs~ (r,'p) and ~2 (r, p) as given by (2.16) possess 
the properties they should have on behalf of (2.5). 

It is not difficult to prove that ~ ( r ,  p) and ~2(r, p) as given by (2.16) have series expansions 
in r which are convergent for Irl < 1, and which satisfy the set of recurrence relations (2.4). The 
solution of the system (2.4) is unique, since E{exp (-pw,,)l w,, =0} determines E {exp ( - p w , )  
(w, < K)} and E {exp ( - pw,) (w, > K) } uniquely. Consequently, (2.16) represents the generating 
function of the solution of the set of equations (2.4). (For more details on the.proof cf. also 
Cohen [1], ch. III,4.) 

3. Model I for M/G/1 

In this section we take with a > 0, 

A ( t ) = l - e - t / %  t > 0 ,  

= 0  t < 0 ,  
so that 

1 1 
( P ) -  l + a p '  R e p > - - .  

Hence, m = 1 and f(r, p) is independent of p. We define 

f ( r )=f(r ,  p), Jr[ < 1. 
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From (2.13) we have for Irl < 1, 

fit(Of(r) (1 . . . .  g(r, f i t(r))exp(-6~(r)K)+r = 0 (3.1) 
l--c~3t(r) + --r--cwtLr)) f i 2 ( 3 - ~  

From (2.15) it follows for v2(r)<Re r /<0,  Re r /<Re  p, ]rl < 1, 

g ( r , p ) _  1-~xpTrfl(p) fc { rf(r) + r} r / -b t ( r )  e 'K dr/ (3.2) 
fl2(P) 27ri{p--6t(r)} , 1--~r/ 1--~r/--rfl(r/) 1--r--c~r/ r/--p" 

In (3.2) we take p = c51 (r) and replace the path C~ by A, (see figure). Of the poles of the integrand 

c,+ 

1 
1 

I m ~  
I - r  

| a 

| 
i 

i 
i 

, .  . . . . . . . . . . . . . . . . . . . .  - ~  . . . . . . . . . . . . . . . . . . . .  / 

f . . . . . . . . . .  ~ -  . . . . . . . . . .  J 

l 
, I / a  
I \ 0 

A 

Re~l 

in (3.2) with p = 61 (r) which are at the r ighthand side of C, only the pole r/= c51 (r) is at the left- 
hand side of A,. 

It follows from (3.2) and (3.1) that 

1  f(r) + r - 0 .  
2~i ,, 1 - ~ q  1-c~q-rfl(r/) 1 - r - ~ r /  

r ( e "K dr/ 

Hence f ( r ) =  - 2rci )a, 1--Tr/--rfl(r/) 1--r--~r/ , [ r [ < l .  (3.3) 
1 ( r/ e 'K dr/ 

L 2zci ~ 1 - c~r/ 1 - ~r/- rfl (11) 1 - r -  ~r/ 

Consequently, (3.2) and (3.3)'determine f(r)  and g(r, p), and hence (cf. (2.16)) the functions 
�9 t(r, p) and ~2(r, p), i.e. for [3(p) a rational function o fp  the solution for model I has been ob- 
tained. Since in the derivation of the integral equation (2.8) no use has been made of the assump- 
tion that fl (p) is a rational function of p, and since it is readily verified that for general fl (p) the 
functions ~t(r,  p) and ~2(r, p) determined by (3.2) and (2.16) also satisfy the integral equation 
(2.8), it follows easily that the solution obtained is valid for general service time distribution B(t). 
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In (3.3) we replace the path A, by the path B, (see fig.). On B~ we have Re ~7 > 0, and the point 
t / = l / a  is at the righthand side of this path, while for all [r I < 1 the points ( 1 - r ) / e  and 51(r ) 
are always at its lefthand side. 

It follows for It[ < 1, 

1 - r  e (1-r)K/" (1--r)r  ( e "K dr/ 

f ( r ) = l - r  1 - r  e (1-r)r/~ c~ f (1-~t / ) - i r /  e"rdr/ , I r [ < l ,  
- - +  

1-fl{(1-r)/c~} ~r 2 T~/ , 1 -~ r / - r3 ( r / )  1 - r - ~ r /  % 
(3.4) 

f(r) is analytic for Irl < 1. From (3.4) it is not difficult to prove that (1 - r ) f ( r )  has a series ex- 
pansion in r which is convergent for {rl < 1. From (2.16) it follows for p real, Jr[ < 1, 

lim r  f ( r ) _  ~ r"Pr{w,=Olwl=O}.  
p ~  ~ n = l  

By using the Abelian theorem for generating functions we obtain 

lira Pr { w , = 0 l w l = 0 }  = l!m ( l - r )  f(r--~) - 1 , a=fl/c~, 
a f_ e"~ ~ dr/ 

,-~oo �9 -c~ - 1 - ~ :c, (1-c~r/){1-~r/-f(r /)} (3.5) 

for c~- 1 > Re r/> 31 (1). It is easily proved that for rT1, lira 61 (r) = 61 (1) < e -  1. 
Denote by n the number  of customers which have arrived during a busy period, then 

f(r) _ E{r"} [r I < l .  (3.6) 

From (3.6) it is easily found that for e - l > R e  r/>61(1), 

a fc e rr o~ dr/ (3.7) E{n} = 1 - ~ . ( 1 - c ~ q ) { 1 - c ~ r / - f l ( r / ) } "  

From (3.2) and the results obtained above it is easily shown that (1- r )g( r ,  P)/fl2(P) has a 
limit for rT1. We define 

f =  l!m (1-r) f (r) ,  g(p )=  [!m (1-r)g(r, P)/fl2(P). (3.8) 

If a < 1 then 61 (1) = 0. Since no pole of the integrand in (3.2) crosses the path C, for rT 1 it follows 
from (3.2) if a < 1, 

g (p) = 1 - e p -  fl (p) 1 fc f r~ e "K dr/ (3.9) 
p 2~zi , - ~  1-c~r/ 1-~r / - f l ( r / )  n - p '  

for Re p = 0 ,  Re q = 0 - .  
If a > 1, we rewrite (3.2) as (cf. derivation of (3.3)), 

fA { I r / - p + p - 3 l ( r )  e"K dr/ g(r, p) = 1--c~p-rfl(p) 1 rlf(r) + r 
fl2(P) p--31(r ) 2rci . 1 - - c~ r /  1--er/--rfl(r/) 1--r--er/  r/--p 

2~/ } 1 e "K dr/ ( ) rf(r) + r  
= {1-c~p-rfl(p)} jA.[l_o~r/ 1-col-r f l ( r / )  1 - r - e q  q - p  

I { ~ r r  } e (1-'~/~ 1 
= {1-~p-rf l (p)}  f (r)+r r{1-f l ((1-r) /~)}  1--r-c~p + 

1 rlf(r) + r 
+ ~ /  ,, 1-c~r/ 1 -e r / - r f l ( r / )  i - r - a r /  r/-~p ' 

with Re p sufficiently large, i.e. on B, we have Re I/< Re p. 
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It follows that for a > 1, c~- ~ > Re ~ > 61 (1), Re p > Re r/, 

I 1  { f }  1 fc f 1 e "K dr/ ~ (3.10) 
9 (p)=  - { 1 - u p - f i ( p ) }  ~p 1 + - ~ /  . -c~ 1 - e t /  1-c~t/-fl(r/) r/-~p " 

From the relations for f(r) and g(r, p) found above, the expressions for (b~(r, p), ~2(r, p) and 
q~(r, p ) m a y  be obtained, and it is not  difficult to prove that E {exp(-pw,) l  w~ =0}, E{exp 
(-pw,)(w,<K)lwl=O} and E{exp(-pw,)(w,>K)lw~=O} have limits for n--,oe (cf. the 
derivation of (3.5)). 

It is found for Re p > 0  that (cf. (2.16)), 

lim E{exp(-pw,)(wn<K)lwt=O} - ~P { f  } .--,co 1 -~p- f l (p )  - (1-ap)g(p)exp(-pK) , 

lim E {exp ( - p w,)(w,_>__ K)[ w~ = 0} = - (1 - ep) 9 (P) exp ( - pK). (3.11) 
n - - +  o o  

Since we have from (3.11) for p = 0 ,  

1 - a  g(0 9(0)= 1, 

it follows 
_ _  1 - a  

9(0) = f + -  (3.12) 
~a a 

An interesting quantity is the "congestion probability", 

lim Pr{w.>=Klwl = 0}. 
n - - +  o o  

Obviously 

lim P r { w . > K l w l = O } = - g ( 0 ) = - a - l { f  + l - a }  
n ---r 0(3 

1 - a i "  e~K e dr/ 

1 + ~ 3c 1-~r /1-c~r / - /?( r / )  6~(1)<Rer /<  _ 1 (3.13) ~ _ .  tl 

a ( e nK c~drl ' 

1 - 272~ )c,, 1 - e r /  1-c~r/-fi(r/) 

Next, we particularize some of the formulas derived above for negative exponentially distribut- 
ed service times and for constant service time, respectively. 

a) Negative exponentially distributed service time, M/M/1. 
We now have with fi > 0, 

B(t) = l -e-t/a, t > O , 
= 0 ,  t < 0 ,  

so that 
1 

B ( P ) -  l + t i p '  R e p > - l / f l ' .  

From (3.5) we obtain 

1 - a  
lim P r { w . = 0 1 w l = 0  } = a r  
n--, oo 1 - -  a 3 e - (1  - a ) K / #  ' ' 

1 
- -  a = l ,  

3 + K/lS ' 

(3.14) 
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and from (3.13) 
1 - a 2 e -  ( ~ - a)K/fl 

lira Pr { w . < K l w l = O }  = 
,~ oo 1 - -  a 3 e - ( 1  -a)K/fl ' 

2 +/r 

3 + K / f l '  

From (3.9) or (3.10) we obtain 

a 2 (1 - a)  e - ( 1  -a)K/p  
g(p) = 

1 +tip 1 - a 3 e -u-")lr . 

From (3.14) and (3.16) we obtain (cf. (2.16)), 

~ , (p)  = lim (1-r)~b,(r ,  p) 

a # l ,  

a = 1  . 

1 - a  1 

1 - - a  3 e -(t-~)K/~ t ip+ 1 - a  
{ 1 + tip - a 2 (1 - ep) e-(~p + 1 - a)K/fl}, IPl < oo ,  

(3.15) 

(3.16) 

r = !!~ ( l - r ) r  p) 

= ( 1 - a ) a  2 1-o~p e_(pp+a_a)K/~ Re p>_ 0 ,  
1--aa e -u-~)~/~ 1 +tip 

r (p)= r 

1 - a  l { l + f l p _ a 3 1 - C ~ p  e_(ap+,_,)K/a} 
= 1 - a 3 e  -(1-")K/t~ f l p + l - a  1 ~  " 

Hence 

lira Pr { w . < w l w l = O }  = O, 
n---~ oo  

1 - a e -  u - . ) w / ,  

1 - a 3 e -  (~ - a ) K / , ,  

(3.17) 

w < 0 ,  

0 < w < K ,  

_ 1 {1 - a 3 e - ( ' - a ) K / a - a ( 1  - a ) Z e  -(w-a~)/p} 
- l_aae_(l_a)K/l~ 

b) Constant service time, M/D/1.  w > K .  (3.18) 
For  this case 

Since 

fi (p) = e -  ~P . 

e"K l '  1 
(1 7 at/)(1 - c~t/- e -  nt~) = e"(/r + a' 1 - c(tl - e - nP 

it follows from (3.5) and (3.13) for Re  q > 6 1 ( 0 ,  

1 
l i m ' P r { w , = 0 [ w l  = 0} = 

q 

1 - a  f e n ( K + ~  ) 
l + ~ i - n / J c ,  

lim P r { w , > K [ w ~ - - 0 }  --- 

" ~  1 - - - a  j; e"'~+" 
2hi 

1 - c ~ t  1 ' 

adtl ' 

1 - ~ t l - e  - ~  

e dtl 

1 - ~ t l = e - " ~  

~dr/ 

1 - ~ - e  -"~ 

(3.19) 
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For a < 1 denote by w a stochastic variable with distribution the stationary waiting time distri- 
bution of the single server queue M/D/1. It is well known that for this case 

c~p Re p > 0. (3.20) E{exp (-pw)} = (1 - a )  e_tb + ap_  1' 

Using the inversion formula for the Laplace-Stieltjes transform it follows that for Re ~/> 0, 

1 (~ e ~ (1-a)atldtl 
Pr{w<x} = ~ ,  q e_p,+~q_ 1, x > 0 ,  

= 0, x < 0 .  

Hence, from (3.19) we have if a<  1, so that 8~(1)=0, 

1 - a  
lira P r{w .=0 lw t=0}  = 
,_~ 1 - a  Pr {w> K +fl} 

lira Pr {w.> Klwi=O} = ( l - a ) P r { w > K + f i }  
._~ 1 - a  Pr{w>K+fl}  ' 

(3.21) 

Obviously, the last relation represents the congestion probability. 

4. Model  II  for M [ M [ 1  

For this model the mathematical formulation is given by 

w . + l = [ w . + ~ . - G + i ]  + if w.+~.<K, 
= [ w . - a . + l ]  + if w.+x.>K,  

(4.1) 

for n = 1, 2 . . . . .  We shall always take 
w l = 0 .  

From (4.1) and (4.2) it follows that for n = 1, 2 .. . .  , 

w. < K with probability one. 

It follows that 

E{exp(-pw.+i)  lw~=O} = 

(4.2) 

(4.3) 

E {exp(-p[w. + ..  +a.+ l]+)(w. + T.<K)lwl =0} 
+ E {exp(-p[w.-a.+l]+)(w.+x.> K)lwi =0} 

E {exp(-p[w.-a.+ l]+)(w~+~.> g)lwl =0} 
+ E {(exp(-p[w.+ T.-G+ l] +) 

- e x p ( -  p[w.-a.+ i] + )(w. + % < K)l wl --0} . (4.4) 

In the sequel it will be assumed always that c~ ( -  4) exists for Re ~ = 0 +. From (4.4) we obtain 
for Re p>Re  4 = 0 + ,  Re t /=0+ ,  

1 f c ~ ( ~ - ~  ~) E{exp(-pw.+l)[wi=O} = ~ + ~(-OE{exp(-~w.)lw~=O}d~ 

1 f c (  1 ~) + ~ ~ + a ( - r162  

- exp ( -  ~w.))(w. + , .  < K)[w~ = 0} d~ 

- 2~i + ~(-OE{exp(-~w")lwt=O}d~+ 
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+ 2~/i t ,  ( ~ - ~  + ~ ) e ( - ~ ) 2 ~ / j ; ,  E{exp(rl(K~ w"-%)) 

{exp ( -  ~(w,+ %)) -exp  (-~w,)} Iwl = 0~ dr/ 
) 

- 2~i ~ + ~(-~)E{exp(-~w,)[w~=O}d~ 

+ + 
~ Cr /  /~ 

xEfexp(-(r =0} dq. (4.5) 

In the derivation above we used the fact that w,, ~, and e,+ ~ are independent; the reversal of 
integrations and expectation operator E is easily justified. 

We may now introduce the generating function Z ~~ r"E{exp(-pw,)[wl =0} and derive 
from (4.5) an integral equation for this function. For e(p) and fl(p) rational functions of p it 
seems possible to solve this integral equation, however, the solution is very intricate. We shall 
restrict the discussion, therefore, to the simplest case: 

1 1 
c~(p)- l+c~p' [3(p)- l+flp' Rep=>0. (4.6) 

For this case the time dependent solution is still intricate and we shall therefore discuss only 
the stationary solution of the problem. Using a method as described in Cohen [-1], ch. III, 4 it 
may be shown that 

lira Pr {w,<wlwl=O} 
II - 4  oo  

exists and that it is a proper probability distribution (cf. also Afanas'eva and Martynov [2]). 
Define 

(p) = lim E {exp ( -  pw,)lw~ = 0}. (4.7) 
n - 4  co 

Below we shall determine the function ~(p). The method to be used may be applied also if 
~(p) and//(p) are rational functions of p. 

For the stationary solution of the problem the integral equation (4.5) applies with E {exp 
(-pw,+t)lw~=0} replaced by ~(p). Using (4.6) we obtain for Re p>Re  4>0, Re ~<~-~, 
Re ~/=0+, 

1 1 } q~(~)d~ 
2rCifc ( p @ ~ + ~ ) [ {  1 1--Cr 

[34 d~ fc e'K 1 ~ (~+~ / )d t / l=0 .  
+ 1 - e ~  ~ , t/ (l+flr/)(l+(~+~/)fl) 

With 
a = fl/c~ and fl = 1, 

we obtain for Re q = 0 + ,  Re p>Re  4>0, Re ~ < e - 1 ,  

1 Ic p 1 Ie b a f c  e"K 1 1 r  0 (4.8) 2rci p-~ 1-~/a ( 4 ) - ~ /  , i/ l+t /  l + t / + ~  

From (4.3) it follows that �9 (p) is an entire function of p of exponential type and order one; 
moreover, 

lim r pK = 0, ~-~< arg p<  1~'~, 

lim O(p) = constant, -�89 < arg p < �89 (4.9) 
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Hence, by contour integration, for Re p >Re ~ > 0, Re ~ < a, 

1 fc r 1 1 ~ l + ~ - a  ae -(I+r ae_Kr 
2~z~ p - r  1--r i ~  r r162 ~ ( - 1 )  + ~ 

Again by contour integration 

{ l + p - - a  ae -(~+p,K a_p } 1 
l + p  4~(p) p(p+l )  r  e-Kcb(p--1) 1--p/a 

+ { l @ a ~ ( a  ) ae -O+a)K } a - -0 .  a( l+a)  ~(--1)+e-Kr p--a (4.10) 

The relation (4.10) must be valid for all finite ]Pl since ~b(p) is an entire function. Note that 
p=0 and p = - 1  are no singular points of (4.10). Hence 

l + p - a  P 1 - p  ~(p) + e -K~(P- ! )  ae-(l+P)K p(p+l )  r  (4.11) 

where C is a constant, i.e. independent of p. Since the coefficient of q~(p) is zero for p=a-1 ,  
it is seen that the general solution of (4.11) will have a singularity at p=a-1 .  ~(p) should be 
an entire function, however, i.e. the constant C should be chosen such that the solution of 
(4.11) has no singularity at p=a-1 .  

Defining 

p ( p ) _ a  l + p  e- K q ( p ) = a e  -(~+~ _ l + p  
p a - p - 1  ' p a - p - 1  ' r(p) a - p - 1  ' 

we have 

r = p(p) r  1) -q(p) qS(- 1)-r(p)C.  (4.12) 

From (4.12) we obtain 

r = - q ( p ) r  1)-r (p)C+p(p)E-q(p - 1 ) ~ ( -  1 ) - r ( p -  1 ) C + p ( p - : l ) r  2)], 

and for n = O, 1, 2 . . . . .  

r n+l i-1 1 n+l 
- C  (P) + Z r(p-i) • p(p-j)  + 1~ p ( p - j ) ~ ( p - n - 2 ) .  (4.13) 

i=1  j = 0  j = 0  
Since 

i-1 1 I] P (P -J) = aie- iK __P + 1 i--j~l_O 
j=0 p - i + l  .= a - l - p + j '  

i - 1  i 1 

r(p-i) j=oI-I p(p-J)= a%-UC(p + 1) j__I~Io, a =  - 1 -  p+j ' 

i-i , / I 

q(p- i) j=ol-I P (P-J) = a'+ l e -~  + ~ ~ p_  i 

and since on behalf Of (4.9), 
n + l  

lim I-I p ( p - j ) ~ ( p - n - 2 ) =  o 
n--, oe 1=0 

1) A1 
p - i + 1  (p+l)  _ a - l - p + j  �9 ( 4 .14 )  

it follows from (4.13), 
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q~(p) = - r  q(p) + q(p-i) p (p - j  
i = 1  

- C  r (p )+  r ( p - i )  p ( p - j  . 
i = l  " =  

Inserting the relations (4.14) in (4.t5) yields 

(b(p)= ~ ( - 1 ) e  -(I+p)K {l + ( l + p )  Z ai _r(a-p-1)F(i+l) t  
,=oi! r (a-p+i)  J 

a i r ( a - p - 1 ) r ( i + l )  
~ C ~l ~ p~ e - ~K 

a, ~ V(a-p+i)  i = 0  

277 

(4.15) 

(4.16) 

The constant C is determined by the condition that ~ (p) should be an entire function. 
Taking in (4.16) p = a - 1  the condition that ~(p) is an entire function yields 

C = e m - ~ ) - " e - ~ ( -  1), (4.17) 

with C given by (4.17) it is readily verified that 4~ (p) has no poles for finite [Pl. 
The norming condition requires 

~(0) = 1, 

and by this condition 4~(-1) is determined. It follows 

- 1  

a%-uc F(a-1) l  
, = o  r Ia+ i )  e i=o ~ d  ' (4.18) 

for a r  1. From (4.16) we obtain for the probability that an arriving customer has zero waiting 
time 

lira Pr {w, = 0l wt = 0} = C. (4.19) 
w-+ co 

The probability of congestion is given by 

lim Pr{w.+~,> Klwl= 0} = 1-1im Pr{w,+~,<Klwl=O}.  
n---* oo n - ~ o o  

Using the inversion formula for the Laplace-Stieltjes transform we obtain for Re p > 0, by 
noting that r is an entire function, 

1 fco epK ~ (p) dp lira Pr{w.+~,>KIw~=O}=l -2-~i~i p l + p  
n-.~ oD 

1 fcp ePr ~(-1)e-( l+P)rdP = 1 - ~ /  p (p+ l )  

1 g e pK a i 

L 7 ,=o ( a - p - 1 ) . . . ( a - p + i -  1) { ~ ( -  1) e-(* +P)x - C e-it} 

= ~ ( -  1)e -g . (4.20) 

To obtain the stationary distribution W(x) we start from 

~/1 fcp epx W ( x ) - I  = -fi-~(p)dp, R e p < 0 ,  R e p < a - 1 .  

It follows for 0 < x < K ,  R e p < a - 1 ,  R e p < 0 ,  
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W ( x ) - i  = ~ P tip 4)(-1)e -(l+~ 

+ (p+ 1) g)(_ 1)e_(1 +p m ~ a' 
i~=o (a-p-1).. .(a-p+ i-1) 

It follows 

a i e- iK 1 
- ( p + l ) C  i=o ~ (a-p-l).7.~--p+i-1) 

a i 
= - ~ ( - 1 ) e - / ~ - ~ ( - 1 ) e - r i = o  ~ (a-1)a...(a+i-1) 

+ ~ ( _  1) a ,)x-./~ { ~ ai } �9 a-~_l e("- 1 +  
i=1 

+ ~ ( -  1) a+  1 eaX_ta+,)K --a + 
a i=2 -1"  1 . . . i -1  

a+2  . + 2m~ a2 ai } 
+ g i ( -  1 ) - -  e" 1),,-(~+ _ _ +  

a + l  [ - 2 " - 1  i = 3  - - 2 "  - -  1" 1"2...(i-2) 

+ ~ ( _ 1 )  a + 3  e(a+2)x-(a+3)K{ a 3 
a + 2  ' -3"  ~2" - 1  

a' } 
+ ,=4 - 3 2 - 2 . - 1 - "  1"2.. .(i-3) 

W(x)= 1 - r  -K {1 + k dr(a-I) 
,=o F(a+i) 

j=o a+j-1 j! e+J(x-K " (4.21) 

Till now it has been assumed that a r 1. Next we shall consider the case that a=  1. We 
rewrite the norming condition as follows 

{r 1 { 2 ~ 1 7 6  a i - 1 }  
=1 +7~-1 +,~2~a=1)...(,+/-1) 

e(1-a)K+a(1-e-K) { ai-le-iK ~. 

- a - 1  I + e - X +  i=2 ~ ( a + ~ ) . . . - ~ i - 1 ) J  

Letting a--+ 1 and applying Hospital's rule yields 

{ e ( -  11e-~)-1= 1 + 
i=2 i~. i=2~. + " "  + 

' e -  iK 
+(K-l+e-qel-~ E -~,U" 

i=0 
Hence 
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{ e ( - - a ) e - r } - l = l + e - -  1 + . . .  + 
/ = 1  

- e ( l - e - ~ '  e -K+e-K-- i= l  ~ ~---~ / 1 + ' ' ' +  + ( K - - l + e - r ) e "  

Since (cf. Erd61yi, [3]), 

E i ( - x ) =  - t - l e - t d t = y + l o g x - e  -x 1 + + 
i = 1  ~ '~  , " ' "  

it follows 

{~b(- 1) e-K} - 1 =  1 + e + e E i ( -  1 ) -  e T - e { e - K +  E i ( - e  - r )  - ? + K }  + e ( K -  1 + e  - r )  
= 1 + e { E i ( -  1)--Ei(--e-K)}.  

Hence for a = 1, note that we have taken here always fl = 1, 

1 
~ ( - 1 )  e-K = 1 , (4.22) 

l + e  f._~r t - l e - t d t  

C = e " -K~-~  1). 

It is of some interest to consider the probabilities lira Pr { w, = 0 ] w 1 = 0} and lim Pr ( w. + ~,__> 
n--~ oo n--~ oo 

K i w i = 0 }  for K ~ o o .  From (4.19), (4.20) and (4.22)we obtain for K ~  

q ~ ( - - 1 ) e - K ~ 0  , C ~ l - a  for a < l ,  

0 , ~ 0  for a = l ,  

1 
ai , --* 0 for a > 1. (4.23) 

l ' q -  i = 0  ~ (a-1)a . . . (a+i-1)  

The last relation of (4.23) is of particular interest since it shows clearly the influence of con- 
gestion on the behaviour of the queue with traffic intensity a exceeding one. 

5. Model II for M/D/1 

For the present case the service time is constant and equal to fl, while 

(p) = e -  

Obviously, the case fl > K is of no interest, since no customer will be admitted to the system. 
Henceforth it will be assumed that K>fl. 

Define 

H = K - f l .  

It then follows from (1.4) that 

W , + l = [ W , + f l - a , + l ]  + if w , < K - f l = H ,  

= [ w , - a . + l ]  + if w, > K - f l = H .  

W 1 = O. 

These relations, however, are identical with (1.2) if K is replaced by H. Hence for the present 
case the results of section 2 and 3 can be used. 
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We shall here consider only the probability that the system is empty at a moment of arrival 
and the probability of congestion, both for the stationary situation. 

Noting that 

1 e -ha 1 1 
1 - e t / - e  -~" 1 - a t /  1 - c ~ - e  -"a 1 - e ~  

it follows from (3.5) and (3.13) with K replaced by K - f l  that for Re t/>~1(1 ) , 

1 
lira P r{w,=0 lw~=0}  = , (5.1) 

a C e"K ~d~ ,-~o 1 - ~ .~. 1 - c ~ q - e  -r 

1 - a  ( edt/ 

lim Pr {w,+f l>  KI wa = 0} = " (5.2) 
1 jc / 1 ~  o o  _ _  _ _  e r / K  

2rci . 1 - a t / - e  - ~  

Suppose for the present that a <  1 and denote by w a stochastic variable with distribution the 
stationary waiting time distribution of the M/D/1 system. 

It is well known that 

c~p Re p > 0 E { e x p ( - p w ) )  = ( l - a )  e _ O P + e p _ l ,  = " 

Using the inversion formula for the Laplace-Stieltjes transform we have 

1 f~ e"x (1-a)~/dtt 
Pr{w<x}  = ~ j ~ ,  q e _ , ~ + ~ t / _ l ,  R e t / > 0  

Consequently, we may rewrite (5.1) and (5.2) as 

(5.3) 

1 - a  
lkn Pr {w,=Olwl=O} = l - a  Pr{w_>K} 

n --~ o o  

lira Pr {w.+[3~Klwl=O} = (1-a)Pr {w>=K} 
.-~oo 1 - a  Pr {w>K} 

(5.4) 

If a > 1 then 61 (1) > 0 so that the integrands in (5.1) and (5.2) have a pole in the righthalfplane. 
Using this fact it is easily derived from (5.1), (5.2) that for K~oe, 

(5.5) 

(5.6) 

lim Pr{w/1:Olwi=O}--*l-a if a < l ,  
/1--* o o  

~ 0  if a__> 1 , 

lim P r { w , + f l > K l w l = 0 } ~ 0  if a__<l, 
n --~ o o  

1 
~ 1 - -  if a > l .  a 

6. Model Ill 

For model III we have for n = 1, 2 . . . . .  (cf. 1.6), 

w,+l = [ w , + ~ , - a , + l ] *  if w/1<u/1, 

= [w/1_~,+l]+ if w/1>u/1, 

W l = O .  
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For the distribution of u. we shall take here for all n = 1.2, ..., 
P r { u . < t } = l - e  -t/c, t>0 ,  c > 0 ,  

= 0 ,  t < 0 .  
From (6.1) we obtain for Re p > 0, n = 1, 2 . . . . .  

E {exp(-pw.+l)lwl=O } = E{exp(-p[w.+ ~.-a.+ l]+)(w.< u.)lwl =0} 
+ E{exp(- p [w. -  ~.+ 1] +)(~. = u.)l ~1 = 0} 

= E{[exp(-p[w.+~.-a.+ 1] + ) -  e x p ( - p [ w . - a . +  1]+)] 

(w.<..)l wl =0} 
+ E{exp(-p [w.-#.+ 1] +)1 wl =0}. (6.2) 

We have since w. and u. are independent by assumption 

E{exp(-pw.)(w.<u.)} = e{exp(-pw.)(w.<u.)}d. Pr{u.<u} 

= exp ( -  pw) dw Pr { w. < w} du Pr {u. < u} 
= 0  w = O  

= e x p - p w  wPr w.<w uPr u.<u 
= 0  = w  

Assuming that e (0 - )  exists we Obtain from (6.2) for Re p>Re  4--0+,  n = l ,  2 . . . . .  

1 j' ( 1 1 )E{exp( -~ (w. -a .+ l ) ) lw l=0}d~  E{exp(-pw.+l)lwl=O} = ~ c~ ~ +?  

+ ~ /  , ~ _ ~ +  E{ [exp ( -~ (w .+~ . - a .+ l ) )  

- exp ( -  ~(w.-  ~r + 1))] (w. < u.) I w 1 = 0} d~, (6.4) 

the reversal of integration and expectation operator is easily justified. Since w., %, tr.+ a and 
u. are independent variables, it follows from (6.3) and (6.4) for Re p>Re  ~ = 0 + ,  n=  1, 2 . . . .  , 

E{exp(-pw.+l)lwl=O} = ~ ~_~  + ~(-~)E{exp(-~w.)lwl=O}d~ 

1 1 + -fl(r  (4  w~=0}d~ (6.5) 

Defining for Irl < 1, Re p>0,  
d e f  oo 

r p) -- 2 :E{exp(-pw,)lWl=O}, (6.6) 
n = l  

we obtain from (6.5) for Irl <1, Re p>Re  4 = 0 + ,  

2~ ~ + { l -r~( -~)}~(r ,~)d:  

f ( 1 
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From now on it will be assumed that the interarrival times have a negative exponential distri- 
bution so that 

1 1 
e ( P ) -  1 - e p '  R e p >  - - , e  e > 0 .  

Consequently, for Irl < 1, Re p >Re  4 = 0 + ,  

i f p 1 [ 1-/~(~)~b(r,~ + ! )  + 
2~i cr P - ~  1 - e ~  r 4 

(6.8) 

r  - - -  1 r d 4 = 0 .  

(6.9) 

Denote by ~ (r, ~) the expression between square brackets in the integral of (6.9). Obviously, 
~(r, ~) is an analytic function of ~ for Jr1 < 1, Re 4 >0. Consequently, 

0 = ~ p - ~  1 - ~  1-c~p ~ ~ r, , 

since on behalf of (6.6) 4~(r, 4)=0(1) for [~[~oe, [arg 4[ <�89 
Since (6.10) holds for all Re p >0, it follows for St1 < 1, 

(r ~ ) l - r - ~ p  1-c~p = C(r) , (6.11) r(1-/~(p))4~ ,p  + + - -  4~(r ,p)-  r 
P P P 

with C (r) a function of r independent of p. From (6.11) we can determine 4~ (r, p) and hence ob- 
tain the time dependent solution. However, we shall restrict the discussion to the stationary 
solution of the problem. On behalf of the results of Afanas'eva and Martynov [21 this stationary 
solution exists. The method which we shall use to obtain the stationary solution can be also 
applied for the determination of the solution of (6.11). Once this latter solution has been ob- 
tained the existence of the stationary solution can be derived from it by applying the usual 
techniques of renewal theory. 

Since the stationary solution exists the following limits exist 

clef 
~b(p) = lim E{exp ( -pw, ) -  w 1 =0} = lim (1-r)~(r ,  p), Rep > 0 ,  (6.12) 

n~oo r t l  

def 
C = lim (1 - r) C(r). (6.13) 

rH 

Consequently, from (6.11) for Re p > 0, 

1-~(P) ~b (P + ! ) - ~(p)= C 

With 
clef 

D = - C/o~ 

it follows from (6.14) for Re p _ 0 ,  

(6.14) 

~(P) - I-~(P) ~@ + l l +  

= D + - -  1-~(p)  D + - -  
~p ~p 

(6.15) 
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I1 1-fi(p) 1-fl(p) l-fi(P+!)l 

+ 1 - ~ ( p )  

and so on. 
Since 

lira Pr{w,=OIw,=O} = lira ~(p), 
n ~ o  lop- '  oo 

it follows from (6.14) for p real 

lirn r = D,  

and hence from (6.15) for Re p=> 0, 

(o �9 i = 0  j = O  ..~ 

The norming condition yields 

i = 0  j = O  . CZ j -  
c 

= ~/~ --- a 

j -  
c 

with 

~p 

larg Pl < �89 (6.16) 

(6.17) 

(6.18) 

(6.19) 

for j = O .  (6.20) 

The probability of congestion, i.e. the probability that an arriving customer is not admitted to 
the system, is given by 

Coo 
lira Pr{w.>u, lwl=O} = | {1-e-~/c}d,~ lira Pr{wn<wlwl=O} 
n--* oo d O - -  n ~  oo 

= I - D  1 +  ~ (6.21) 

Next, we particularize the result obtained above for 

1 
~ ( P ) -  l+/~p'  ~ > 0 .  (6.22) 

Journal of Engineering Math., Vol. 3 (1969) 265-284 



284 

We obtain from (6.18) and (6.22) for Re p>=0, 

ac/fl 
q~(p)=D 1 + ~ f l  (l+pfi)c/fl+j) i = 0  j = O  

=D 1 + ~  '+ 
i = t l  

F ( ~  ( l + p f l ) ) / .  

F(i+ l +(l +pfl) fl)j 
Re p > 0 .  

J. W. Cohen 

We now have (cf. Erd61yi, [3], vol. 1), 

F (p) f ~o (1 - e-t)s-1 
r(p+j)- .o e-P' r(j) dt for j > O .  

It follows 

( fo/ }} ac c (l+flp)t + (1--e -t) dt q~(p)=D 1 + ~ -  exp - ~  ~- , 

Denoting by W(t) the stationary distribution of the waiting time, so that 

W(t)= lim Pr{w,<tlwl=O} 
II-'~ go 

it follows from (6.23), 

W(t)= 0, t<O,  

{ ac} l+aJ0' exp - u + ( 1 - e - " ~ / c ) ~  - du 
= t > 0 .  

l+a ~ exp {-u+(1-e-"~/c) 7}du' 

In particular if fl = c we obtain from (6.24) 

W(flt)=D l + a  e-"+"(l-~-")du 

=D{1-af:-'e"(l-S)ds } 
= D e  a(1-e-t), t ~> O , 

so that 

O = e -a, W(t)  = e -ae-(' /~' ,  t > 0 .  

For the present case the probability of congestion is given by (cf. (6.21)), 

{ e - a - ( 1 - a ) } a  -1  

Re p > 0. (6.23) 

(6.24) 

(6.25) 

(6.26) 
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